## Lecture 3 exercises: Determinants and transformations

1. Compute the determinants of the following matrices:
(a.) $\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$
(b.) $\left[\begin{array}{cc}-5 & 1 \\ 0 & 2\end{array}\right]$
(c.) $\left[\begin{array}{ll}2 & 3 \\ 1 & 1 \\ 0 & 0\end{array}\right]$
(d.) $\left[\begin{array}{ccc}-5 & 1 & -1 \\ 1 & 7 & -2 \\ 3 & 0 & 1\end{array}\right]$
2. Solve the following system of equations using determinants:

$$
\begin{array}{r}
4 x+5 y-2 z=2 \\
3 x+4 y-z=6 \\
-x+2 y+3 z=1
\end{array}
$$

3. Does a linear transformation always map the origin to the origin?
4. Find the $2 \times 2$ matrix that represents the linear transformation that first reflects a point in the line $x+y=0$ and then rotates over $45^{\circ}$ about the origin.
5. Let $A$ be a $3 \times 3$ matrix that represents a linear transformation that maps the points $(2,3,2),(1,0,2)$, and $(0,2,4)$ to the origin. What is $A$ ?
6. Let $A$ be a $2 \times 2$ matrix that represents a linear transformation where the mapping puts all points on the $x$-axis, while halving their $x$-coordinates. What is $A$ ?
7. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$. Try to find out what linear transformation $A$ represents, and describe it carefully in words.
8. Let $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$. Try to find out what linear transformation $A$ represents, and describe it carefully in words.
9. The shear transformation was introduced as the linear transformation represented by the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. But in fact, $\left[\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right]$ represents a shear transform for any value of $c$. Describe how $c$ influences the linear transformation.
10. Give the matrix in homogeneous coordinates of the affine transformation (in 2D) that represents rotation over $180^{\circ}$ over the point (3,1).
11. Give the matrix in homogeneous coordinates of the affine transformation (in 2D) that represents scaling by a factor 3 (for both coordinates) with respect to the point $(1,1)$.
12. Give the matrix in homogeneous coordinates of the affine transformation (in 3D) that represents reflection in the plane $x+z=3$.
13. Suppose that a linear transformation maps a point $(2,3)$ to $(0,1)$ and maps a point $(9,7)$ to $(1,0)$. Find the matrix for this linear transformation.
14. The absolute value of the determinant gives the area of a unit square after it is transformed by a linear transformation. Can a similar statement be made for affine transformations, where we take the matrix in homogeneous coordinates?
If you can make this exercise without looking at the hint, you understand linear algebra very well!
Hint: To answer this question, look carefully at the matrix of an affine transformations, and see what the value of its determinant is by using the cofactors of a suitable row.
